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1. The Polar Pairing

Let E be the vector space over C, and E∨ its dual vector space. Let Sd(E) be a space of homoge-
neous polynomial of degree d over E.

1.1 Polar pairing

A polar pairing is the map
⟨·, ·⟩ : Sd(E∨)⊗ Sd(E) → C, (1)

which is defined by

⟨ℓ1ℓ2 . . . ℓd, w1w2 . . . wd⟩ =
∑
σ∈S

ℓσ−1(1)(w1)ℓσ−1(2)(w2) . . . ℓσ−1(d)(wd) (2)

For example,
⟨ℓ1ℓ2, w1w2⟩ = ℓ1(w1)ℓ2(w2) + ℓ2(w1)ℓ1(w2).

1.2 A partial polarization map

A polar pairing is the map

⟨·, ·⟩ : Sd(E∨)⊗ Sk(E) → Sd−k(E∨), k ≤ d (3)

which is defined by

⟨ℓ1ℓ2 . . . ℓd, w1w2 . . . wk⟩ =
∑

1≤i1≤···≤ik≤n
⟨ℓ1ℓ2 . . . ℓk, w1w2 . . . wk⟩

∏
j ̸=i1,...,ik

ℓj . (4)

For example,

⟨ℓ1ℓ2ℓ3, w1w2⟩ = ⟨ℓ1ℓ2, w1w2⟩ℓ3 + ⟨ℓ1ℓ3, w1w2⟩ℓ2 + ⟨ℓ2ℓ3, w1w2⟩ℓ1.

1.3 Definition in coordinates

Let (ξ0, . . . , ξn) be the basis of E and its dual basis (t0, . . . , tn) in E
∨. Then we can identify S(E∨)

with polynomial algebra C[t0, . . . , tn] and Sd(E∨) with the space C[t0, . . . , tn]d of homogeneous
polynomials of degree d where

⟨ti00 · · · tinn , ξ
j0
0 · · · ξjnn ⟩ =

{
i0! · · · in! if (i0, . . . , in) = (j0, . . . , jn),

0 otherwise.
(5)

For example, ⟨t20t1, ξ20ξ1⟩ = 2.
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1.4 The pairing in terms of differential operators

Since ⟨ti, ξj⟩ = δij , we can view a basis vector ξj as the partial derivative operator ∂j =
∂
∂tj

. Hence

any element ψ ∈ Sk(E) = C[ξ0, . . . , ξn]k can be viewed as a differential operator

Dψ = ψ(∂0, . . . , ∂n).

Then, the polar pairing becomes

⟨ψ(ξ0, . . . , ξn), f(t0, . . . , tn)⟩ = Dψ(f).

For any monomial ∂i = ∂i00 · · · ∂inn and any monomial tj = tj00 · · · tjnn we have

∂i(tj) =


j!

(j− i)!
tj−i, if j− i ≥ 0,

0, otherwise.

Here and later we use the vector notation:

i! = i0! · · · in!,
(
k

i

)
=
k!

i!
, |i| = i0 + · · ·+ in.

For example, ⟨∂0∂1, t20t21t22⟩ = ∂0∂1(t
2
0t

2
1t

2
2) = 4t0t1t

2
2 =

2!2!2!
2! t(1,1,2)

1.5 The total polarization of f

The total polarization f̃ of a polynomial f is given explicitly by the following formula:

f̃(v1, . . . , vd) = Dv1···vd(f) = (Dv1 ◦ · · · ◦Dvd)(f),

where vk is the direction of the directional derivative, i.e., think of v = (a0, . . . , an) as a vector in
Cn+1 with Dv being the differential operator

Dv = a0
∂

∂t0
+ · · ·+ an

∂

∂tn
.

Taking v1 = · · · = vd = v, we get

f̃(v, . . . , v) = d!f(v) = Dvd(f) =
∑
|i|=d

(
d

i

)
ai∂if.

Example 1.1 Let f(t) = t20, v = (a0, a1). Then Dv = a0∂0 + a1∂1 and

Dv2(f) = Dv(2a0t0) = 2a20 = 2!f(a)

Remark 1.1 The polarization isomorphism was known in the classical literature as the symbolic
method. Suppose f = ld is a d-th power of a linear form. Then

Dv(f) = d l(v) ld−1

and
Dv1 ◦ · · · ◦Dvk(f) = d(d− 1) · · · (d− k + 1) l(v1) · · · l(vk) ld−k.

In classical notation, a linear form
∑
aixi on Cn+1 is denoted by ax and the dot-product of two

vectors a, b is denoted by (ab). Symbolically, one denotes any homogeneous form by adx and the
right-hand side of the previous formula reads as

Dbk(ax) = d(d− 1) · · · (d− k + 1)(ab)kad−kx .
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1.6 A covariant of degree p and order r

Consider the matrix ξ
(1)
0 · · · ξ

(d)
0 t

(1)
0 · · · t

(s)
0

...
. . .

...
...

. . .
...

ξ
(1)
r · · · ξ

(d)
r t

(1)
r · · · t

(s)
r

 ,

where the upper-script mean just repeated basis vector.
The product of k maximal minors such that each of the first d columns occurs exactly k times

and each of the last s columns occurs exactly p times represents a covariant of degree p and order
k.

For example, (ab)2axbx represents the Hessian determinant

He(f) = det


∂2f

∂x21

∂2f

∂x1∂x2

∂2f

∂x2∂x1

∂2f

∂x22


of a ternary cubic form f .

2. Projective space and varieties

The projective space of lines in E will be denoted by |E|. We call P(E) the dual projective space of
|E|. We will often denote it by |E|∨.

A basis ξ0, . . . , ξn in E defines an isomorphism E ∼= Cn+1 and identifies |E| with the projective
space

Pn := |Cn+1|.

For any nonzero vector v ∈ E we denote by [v] the corresponding point in |E|.
If E = Cn+1 and v = (a0, . . . , an) ∈ Cn+1, we set

[v] = [a0, . . . , an].

We call [a0 : . . . : an] the projective coordinates of a point [a] ∈ Pn.
Given a homogeneous polynomial F (x0, x1, . . . , xn) of degree d, the associated projective hy-

persurface is
V (F ) = {[x0 : x1 : · · · : xn] ∈ Pn | F (x0, x1, . . . , xn) = 0}.

2.1 Polar hypersurfaces

We view a0∂0 + · · ·+ an∂n ̸= 0 as a point a ∈ |E| with projective coordinates [a0, . . . , an].

Definition 2.1 Let X = V (f) be a hypersurface of degree d in |E| and x = [v] be a point in |E|.
The hypersurface

P ka (X) := V (Dvk(f))

of degree d− k is called the k-th polar hypersurface of the point [a] with respect to the hypersurface
V (f) (or of the hypersurface with respect to the point).
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Example 2.1 Let d = 2, i.e.

f =
n∑
i=0

αiit
2
i + 2

∑
0≤i<j≤n

αijtitj

is a quadratic form on Cn+1. For any x = [a0, . . . , an] ∈ Pn, we have

Px(V (f)) = V (g), g =
n∑
i=0

ai
∂f

∂ti
= 2

∑
0≤i<j≤n

aiαijtj , αji = αij .

The linear map v 7→ Dv(f) is a map from Cn+1 to (Cn+1)∨ which can be identified with the
polar bilinear form associated to f with matrix 2(αij).

2.2 Second definition of polar hypersurface

Let us give another definition of the polar hypersurfaces P kx (X). Choose two different points

a = [a0, . . . , an], b = [b0, . . . , bn] ∈ Pn

and consider the line ℓ = ab spanned by the two points as the image of the map

φ : P1 → Pn, [u0, u1] 7→ u0a+ u1b := [a0u0 + b0u1, . . . , anu0 + bnu1].

(a parametric equation of ℓ).
The intersection ℓ ∩X can be represented by the degree d homogeneous form

φ∗(f) = f(u0a+ u1b) = f(a0u0 + b0u1, . . . , anu0 + bnu1).

Using the Taylor formula at (0, 0), we can write

φ∗(f) =
∑

k+m=d

1

k!m!
uk0u

m
1 Akm(a, b),

where

Akm(a, b) =
∂dφ∗(f)

∂uk0 ∂u
m
1

(0, 0).

Using the Chain Rule, we get

Akm(a, b) =
∑

|i|=k, |j|=m

(
k

i

)(
m

j

)
aibj ∂i+jf = Dakbm(f).

Observe the symmetry
Akm(a, b) = Amk(b, a).

When we fix a and let b vary in Pn, we obtain a hypersurface

V (A(a, x))

of degree d− k, which is the k-th polar hypersurface of X = V (f) with respect to the point a.
When we fix b and vary a in Pn, we obtain the m-th polar hypersurface

V (A(x, b))

of X with respect to the point b.
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2.3 Reciprocity Theorem

Note that
Dakbm(f) = Dak(Dbm(f)) = Dbm(f)(a) = Dbm(Dak(f)) = Dak(f)(b).

This gives the symmetry property of polars

b ∈ P ka (X) ⇐⇒ a ∈ P d−kb (X).

Since we are in characteristic 0, if m ≤ d, Dam(f) cannot be zero for all a. To see this we use
the Euler formula:

df =

n∑
i=0

ti
∂f

∂ti
.

Applying this formula to the partial derivatives, we obtain

Dvk(f) = d(d− 1) · · · (d− k + 1)f =
∑
|i|=k

(
k

i

)
ti∂if.

It follows from this formula that, for all k ≤ d,

a ∈ P ka (X) ⇐⇒ a ∈ X.

This is known as the reciprocity theorem .
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