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§1 Introduction (10 min.)

Invariant theory studies how mathematical objects behave under transformations; More
specifically, it studies which properties of the objects remain unchanged under these
transformations.

This idea is extremely general, and leads to many different branches of invariant theory
depending on the group and the space under consideration.

Example 1.1 (Euclidean Geometry)

In the Euclidean plane, the natural transformations consist of rotations, reflections,
and translations. Under these transformations, distance and angles are preserved.
For a finite set of points, the squared distances

Dij = (xi − xj)
2 + (yi − yj)

2

are invariants, and in fact they generate all polynomial invariants on these points.

If we enlarge the symmetry group by allowing uniform scalings, then distances are no
longer meaningful, since they are no longer invariant. Angles, however, remain unchanged
(This illustrates a principle of Klein’s Erlangen Program: a geometry is determined by its
symmetry group, and its fundamental notions are precisely the invariants of that group).
In modern invariant theory, we study a group Γ acting on a space V , and we ask for

functions on V that do not change under the action of Γ.
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Example 1.2

Consider the set
Mn(C) := { all n× n complex matrices}

and the group
SLn(C) := {π ∈ Mn(C) : detπ = 1}.

SLn(C) acts on the set Mn(C) by left multiplication:

π : Mn(C) → Mn(C)
A 7→ π ·A.

The determinant is an invariant of this action:

det(πA) = det(A) ∀π ∈ SLn(C).

This action decomposes Mn(C) into orbits, where two matrices lie in the same orbit if one
can be obtained from the other by multiplying by an element of SLn(C). An invariant is
exactly a function that is constant on each orbit.

Thus invariant theory can be rephrased as the study of functions on the space of orbits.

Example 1.3

Let the rotations of a square Z4 act on the plane R2. The invariants are precisely
the functions on R2 that take the same value at all points in each Z4-orbit.
Equivalently, if we form the quotient space (orbifold) R2/Z4, then invariant

functions on R2 are exactly the ordinary functions on R2/Z4.

The ring of invariants thus plays the role of the coordinate ring (the ring of polynomial
functions) on an orbit variety. Consequently, if one wishes to study the ring of polynomial
functions on an algebraic variety that can be realized as a quotient by a group action,
invariant theory provides a natural tool to do so.

As observed from the multitude of examples above, invariant theory has many different
flavours. The classical setup, which we are interested in, is as follows.

§1.1 Setup

Let Γ ⊆ GLn(C). Γ acts on polynomials f ∈ C[x1, . . . , xn] by linear change of variables:

(π · f)(x1, . . . , xn) = f(π(x1, . . . , xn)), π ∈ Γ.

Example 1.4

Consider the binary form f(x1, x2) = x21 + x1x2 and the linear map π =

(
3 5
4 7

)
.

Then,

(π · f)(x1, x2) = f(3x1 + 5x2, 4x1 + 7x2) = (3x1 + 5x2)
2 + (3x1 + 5x2)(4x1 + 7x2).

We are interested in the invariant subring

C[x1, . . . , xn]Γ := {f ∈ C[x1, . . . , xn] : f = π · f ∀π ∈ Γ}

of all polynomials which are invariant under the action of Γ.
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In particular, we aim to solve the following problems.

1. Find a set of fundamental invariants {I1, . . . , Im} which generate C[x1, . . . , xn]Γ.

2. Find all syzygies (algebraic relations) amongst I1, . . . , Im.

3. Give an algorithm for rewriting arbitrary invariants I ∈ C[x1, . . . , xn]Γ as a polyno-
mial in I1, . . . , Im.

Gröbner bases provide computational tools for both finding syzygies (Problem 2) and
rewriting invariants (Problem 3).

§2 Symmetric Polynomials

Definition 2.1. f ∈ C[x1, . . . , xn] is symmetric if

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) ∀σ ∈ §n.

The most important examples of symmetric polynomials are:

Example 2.2 (Elementary Symmetric Polynomials)

e1 = x1 + x2 + · · ·+ xn

e2 = x1x2 + x1x3 + · · ·+ xn−1xn =
∑

1≤i<j≤n

xixj

ek =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik

en = x1x2 · · ·xn

Theorem 2.3 (Fundamental Theorem of Symmetric Polynomials)

The ring of symmetric polynomials is generated by the elementary symmetric
polynomials:

C[x1, . . . , xn]Sn = C[e1, . . . , en].

Moreover, the ei are algebraically independent (no syzygies).

Example 2.4

For n = 2, we can express any symmetric polynomial in terms of e1 = x1 + x2 and
e2 = x1x2:

x31 + x32 = (x1 + x2)
3 − 3(x1x2)(x1 + x2) = e31 − 3e1e2.

Example 2.5 (Power Sums)

Another generating set is the power sums:

pk = xk1 + xk2 + · · ·+ xkn, k = 1, . . . , n.

We have C[x]Sn = C[p1, . . . , pn] as well.
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Example 2.6

For n = 3, we can express any symmetric polynomial in terms of p1 = x1 + x2 + x2,
p2 = x21 + x22 + x23, and p3 = x31 + x32 + x33:

x1x2x3 =
1

6
p31 −

1

2
p1p2 +

1

3
p3.

§2.1 Schur Polynomials

Definition 2.7. A partition of d is a weakly decreasing sequence λ = (λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0) with

∑n
i=1 λi = d.

Definition 2.8. For a partition λ, define the alternating polynomial :

aλ(x1, . . . , xn) = det


xλ1+n−1
1 xλ1+n−1

2 · · · xλ1+n−1
n

xλ2+n−2
1 xλ2+n−2

2 · · · xλ2+n−2
n

...
...

. . .
...

xλn
1 xλn

2 · · · xλn
n

 .

Example 2.9

For λ = (1, 1) and n = 2:

aλ(x1, x2) = det

(
x21 x22
x1 x2

)
= x21x2 − x1x

2
2.

This polynomial is alternating: aλ(x2, x1) = −aλ(x1, x2).

These alternating polynomials aλ are essentially antisymmetrizations of monomi-
als. They form a basis for the space of alternating polynomials (those satisfying
f(xσ(1), . . . , xσ(n)) = sgn(σ)f(x1, . . . , xn)).

Definition 2.10. The Schur polynomial associated to λ is:

sλ(x1, . . . , xn) =
aλ(x1, . . . , xn)

aρ(x1, . . . , xn)

where ρ = (n− 1, n− 2, . . . , 1, 0) is the staircase partition, and

aρ(x1, . . . , xn) = det


xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

...
...

. . .
...

x01 x02 · · · x0n

 =
∏

1≤i<j≤n

(xi − xj)

is the Vandermonde determinant.

Theorem 2.11

The set {sλ : λ partition of d with at most n parts} forms a basis for the degree-d
homogeneous symmetric polynomials:

C[x1, . . . , xn]Sn
d = C[{sλ : λ = (λ1 ≥ . . . ≥ λn), |λ| = d}].
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§3 Binary Forms

§3.1 Setup

Definition 3.1. A binary form of degree n is a homogeneous polynomial

f(x, y) =
n∑

k=0

(
n

k

)
akx

kyn−k ∈ C[x, y].

The binomial coefficients
(
n
k

)
are included mainly for technical convenience—they make

many formulas cleaner.
The group GL2(C) acts on binary forms by linear changes of variables. Given(
c11 c12
c21 c22

)
∈ GL2(C), we define new coordinates:

x = c11x̄+ c12ȳ, y = c21x̄+ c22ȳ.

Equivalently in vector form, (
x̄
ȳ

)
=

(
c11 c12
c21 c22

)−1(
x
y

)
.

Substitution into f yields the new binary form

f̄(x̄, ȳ) = f(c11x̄+ c12ȳ, c21x̄+ c22ȳ) =
n∑

k=0

(
n

k

)
ākx̄

kȳn−k,

where the new coefficients

āk =
n∑

i=0

 min(i,k)∑
j=max(0,i−n+k)

(
k

j

)(
n− k

i− j

)
cj11c

i−j
12 ck−j

21 cn−k−i+j
22

 ai.

are linear combinations of the original ai with coefficients that are polynomials in the cij .

Example 3.2 (Quadratic Binary Forms (n = 2))

For f = a2x
2 + 2a1xy + a0y

2,

f̄(x̄, ȳ) = ā2x̄
2 + 2ā1x̄ȳ + ā0ȳ

2,

where ā0
ā1
ā2

 =

 c222 2c22c12 c212
c21c22 c11c22 + c12c21 c11c12
c221 2c11c21 c211

a0
a1
a2

 .

We observe above that the action of GL2(C) on binary quadratics induces a linear action
ā0
ā1
ā2
x̄
ȳ

 =


 c222 2c22c12 c212
c21c22 c11c22 + c12c21 c11c12
c221 2c11c21 c211

 0

0

(
c11 c12
c21 c22

)−1



a0
a1
a2
x
y

 .

on the polynomial ring C[a0, a1, a2, x, y]. In general, the action of GL2(C) on binary
forms induces a linear action on the polynomial ring C[a0, . . . , an, x, y]. From the invari-
ant–theoretic point of view, we are interested in polynomial functions on C[a0, . . . , an, x, y]
that are constant (or scale in a controlled way) under this induced action.
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§3.2 Invariants of Binary Forms

Recall our earlier definition: For Γ ⊆ GLn(C) acting on C[x1, . . . , xn], an invariant
satisfies

π · f = f for all π ∈ Γ.

For binary forms, we use a more general notion:

Definition 3.3. A polynomial f ∈ C[a0, . . . , an, x, y] is a covariant of index g if, for all
π ∈ GL2(C),

π · f = (detπ)gf for all g ∈ GL2(C).

If f has index 0 then it is an invariant.

Let
f2 = a2x

2 + 2a1xy + a0y
2,

f3 = b3x
3 + 3b2x

2y + 3b1xy
2 + b0y

3,

f4 = c4x
4 + 4c3xsy + 6c2x

2y2 + 4c1xy
3 + c0y

4.

Example 3.4 (Discriminant of Quadratic)

The discriminant
D2(a0, a1, a2) := a0a2 − a21

of a quadratic satisfies

D2(ā0, ā1, ā2) = (detπ)2D2(a0, a1, a2).

It is an invariant of index 2. It vanishes if and only if f has a double root.

Example 3.5 (Sylvester Resultant)

The Sylvester resultant

Res2,3(a0, a1, a2, b0, b1, b2, b3) := det Sf2,f3

is the determinant of the Sylvester matrix of f2, f3. It vanishes if and only if f2, f3
have a common root.

Example 3.6 (Catelecticant)

The catelecticant of a quartic is defined as

C4 := det

c0 c1 c2
c1 c2 c3
c2 c3 c4

 .

It is a fact that all binary quartics can be written as the sum of three fourth powers
of linear forms:

f4(x, y) = ℓ1(x, y)
4 + ℓ2(x, y)

4 + ℓ3(x, y)
4.

The catelecticant is 0 if and only if f4 can be written as the sum of only two linear
fourth powers.
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Although the coefficients of a binary form change under a linear change of variables,
the geometry of its roots does not. Invariant theory isolates precisely those polynomial
expressions in the coefficients (and variables) that are unchanged, or change only by a
power of detπ, under the action of GL2(C). These invariants and covariants therefore
encode coordinate-free information about the polynomial: whether roots collide (discrim-
inants), whether two forms share a root (resultants), or whether a form decomposes into
few sums of powers (catelecticants).
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