Introduction: The Interplay of Symmetric Tensors and Neural Networks

Speaker: Maksym Zubkov, University of British Columbia Venue: Informal Reading Group on Classical Algebraic Geometry Date: September 9th, 2025

Field: Applied algebraic geometry

Key Results: Defining and establishing the connection between homogeneous polynomial and symmetric tensors. Discussing their application to algebraic neural networks.

1. Homogeneous polynomials

One of the main objects of our study will be homogeneous polynomials and symmetric tensors. We begin by defining homogeneous polynomials.

Let F be a field of characteristic zero. For the remainder of this reading group, we will work mostly over the complex numbers \mathbb{C} (or over the reals \mathbb{R} , when specified).

Definition 1.1 A homogeneous polynomial of degree r over a field F is a polynomial in which every monomial has degree r.

Example 1.1 Let $F = \mathbb{C}$ and $f \in \mathbb{C}[x, y, z]$. Then

$$f(x, y, z) = x^3 + y^3 + z^3 + 6xyz$$

is a homogeneous polynomial of degree r=3.

Remark 1.1 The space of all homogeneous polynomials of degree r in n variables with coefficients in F will be denoted by $S^r(F^n)$.

Exercise 1.1 What is the dimension of $S^r(F^n)$ as a vector space over F?

2. Symmetric tensors

Our next object of study is a symmetric tensor of order r over an n-dimensional vector space. Before introducing symmetric tensor, let us first define a general tensor.

We think of a general tensor as a multiarray, i.e., as an element of the space

$$T \in F^{d_1 \times d_2 \times \dots \times d_r}$$

where r is called the *order* of the tensor and each d_i is a positive integer. Equivalently, we may write

$$T = (a_{i_1 \dots i_r}),$$

where $T(i_1, \ldots, i_r) = a_{i_1 \ldots i_r}$ are its entries.

Example 2.1 Let $T \in F^{2 \times 2 \times 2}$. Then T is a tensor of order 3 whose entries may be displayed as two 2×2 matrices:

$$T = \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \right\}.$$

This is a somewhat rudimentary definition, but it will suffice for our purposes.

2.1 Definition of a symmetric tensor

Let \mathfrak{S}_r denote the symmetric group on r elements. We now define symmetric tensors.

Definition 2.1 (Symmetric tensor) A tensor T of order r is called symmetric if it is invariant under any permutation of its indices. That is, for every multi-index (i_1, \ldots, i_r) and every $\sigma \in \mathfrak{S}_r$,

$$T(i_1,\ldots,i_r) = T(i_{\sigma(1)},\ldots,i_{\sigma(r)}).$$

Example 2.2 Let $T \in F^{2 \times 2 \times 2}$. One example of a symmetric tensor of order 3 is the $2 \times 2 \times 2$ array with entries

$$T = \left\{ \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \right\}.$$

Remark 2.1 The space of all symmetric tensors of order r on F^n is denoted by $Sym_r(F^n)$.

3. The connection between homogneous polynomials and symmetric tensors

Next, we want to construct the maps

$$L: S^{r}(F^{n}) \to Sym^{r}(F^{n}),$$

$$R: Sym^{r}(F^{n}) \to S^{r}(F^{n}).$$
(1)

3.1 The L map

Let $\partial_{x_i}: F[x_1,\ldots,x_n] \to F[x_1,\ldots,x_n]$ denote the formal partial derivative

$$\partial_{x_i}(f) = \frac{\partial f}{\partial x_i}.$$

If $f \in S^r(F^n)$, we may write

$$f(\mathbf{x}) = \sum_{|I|=r} a_I \mathbf{x}^I,$$

where $I = (i_1, i_2, \dots, i_n)$ is a multi-index, $a_I = a_{i_1 i_2 \dots i_n}$, and $\mathbf{x}^I = x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$. For a multi-index $I = (i_1, \dots, i_n)$, define the differential operator

$$\partial_{\mathbf{x}^I} = (\partial_{x_1})^{i_1} \circ \cdots \circ (\partial_{x_n})^{i_n}.$$

Then the map L associates to f the symmetric tensor T_f of order r defined by

$$T_f(i_1,\ldots,i_n) = \partial_{\mathbf{x}^I}(f).$$

Example 3.1 Let $f \in S^2(\mathbb{C}^3)$ be given by

$$f(x, y, z) = ax^2 + by^2 + cz^2 + Axy + Bxz + Cyz.$$

Then

$$L(f) = \begin{bmatrix} 2a & A & B \\ A & 2b & C \\ B & C & 2c \end{bmatrix}.$$

3.2 The R map

Now, given a symmetric tensor T, we want to produce a homogeneous polynomial.

$$R(T) = f_T$$

where

$$f_T(\mathbf{x}) = \sum_{|I|=r} \frac{1}{\binom{n}{i_1, i_2, \dots, i_n}} T(i_1, \dots, i_n) \mathbf{x}^I.$$

Exercise 3.1 If F is a field of characteristic zero, then the maps L and R establish a one-to-one correspondence between the space of homogeneous polynomials $S^r(F^n)$ and the space of symmetric tensors $Sym^r(F^n)$.

4. Rank one symmetric tensors

Let V be a vector space over F, and V^* its dual vector space, i.e.

$$V^* = \{\alpha : V \to F \mid \alpha \text{ is a linear functional}\}.$$

A simple tensor $\alpha \otimes v \in V^* \otimes V$ defines a rank-one linear map $V \to V$ by $x \mapsto \alpha(x) v$.

Definition 4.1 The tensor $\alpha \otimes v \in V^* \otimes V$ is called rank one if its corresponding linear map

$$T_{\alpha,v}: V \to V, \quad T_{\alpha,v}(x) = \alpha(x) v$$

is rank one.

Example 4.1 Let $V = \mathbb{C}^2$ with basis e_1, e_2 and dual basis e^1, e^2 . If $A \in F^{2 \times 2}$ with

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$

then the associated tensor in $V^* \otimes V$ is

$$\widetilde{A} = a_{11} e^1 \otimes e_1 + a_{12} e^1 \otimes e_2 + a_{21} e^2 \otimes e_1 + a_{22} e^2 \otimes e_2.$$

In coordinates, if $v, w \in V$, then the rank-one tensor can be written as the outer product

$$v \otimes w = v^T w,$$

where v, w are row vectors.

Example 4.2 If

$$a = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix},$$

then

$$a \otimes a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} a_1^2 & a_1 a_2 & a_1 a_3 \\ a_1 a_2 & a_2^2 & a_2 a_3 \\ a_1 a_3 & a_2 a_3 & a_3^2 \end{bmatrix}.$$

Definition 4.2 If $v_1, \ldots, v_n \in V$ have coordinates v_{ij} (where i indexes the vector v_i and j indexes the jth coordinate), then their tensor (outer) product is defined by

$$v_1 \otimes v_2 \otimes \cdots \otimes v_n = (v_{1i_1} v_{2i_2} \cdots v_{ni_n}),$$

where the entry at (i_1, \ldots, i_n) is the product of the corresponding coordinates.

4.1 Homogeneous polynomials and Veronese map

Exercise 4.1 If $a = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$, then

$$R(a \otimes \cdots \otimes a) = (a_1x_1 + \cdots + a_nx_n)^r$$
.

In other words, we have a map $\mathcal{V}_r: V \to S^r(F^n)$ given by

$$\mathcal{V}_r(a) = (a_1 x_1 + \dots + a_n x_n)^r,$$

which is called the Veronese map.

Exercise 4.2 When r = 2, show that the image of V_2 is the set of symmetric matrices of rank one, i.e., the variety defined by the vanishing of all 2×2 minors.

5. Symmetric Rank

In other words, the Veronese map parametrizes all symmetric rank-one tensors. What is a tensor of rank m?

Definition 5.1 A symmetric tensor T has symmetric rank m if it can be written minimally as a linear combination of m symmetric rank-one tensors, i.e.,

$$T = v_1^{\otimes r} + v_2^{\otimes r} + \dots + v_m^{\otimes r},$$

where each $v_i \in V$, and no such expression exists with fewer than m terms. We write

$$rank_S(T) = m$$
.

Example 5.1 If

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

then

$$A = \frac{1}{2} \Big((e_1 + e_2) \otimes (e_1 + e_2) - (e_1 - e_2) \otimes (e_1 - e_2) \Big).$$

Exercise 5.1 Show that $rank_S(A) = 2$.

5.1 Waring Rank

On the level of homogeneous forms, the symmetric rank is called the Waring rank. In other words, a form $f \in S^r(F^n)$ has Waring rank m if there exist m nonzero linear forms l_1, \ldots, l_m such that

$$f = l_1^r + \dots + l_m^r.$$

Example 5.2 If f(x,y) = 2xy, then

$$f(x,y) = (x+y)^2 - (x-y)^2.$$

6. Algebraic Shallow Neural Networks

Let $\mathbf{d} = (n, m, k)$ be a tuple of positive integers. Consider a map $f_{\mathbf{w}} : F^n \to F^k$ defined by

$$f_{\mathbf{w}}(\mathbf{x}) = W_2 \sigma(W_1 \mathbf{x}),$$

where $W_1 \in F^{m \times n}$, $W_2 \in F^{k \times m}$, and σ is an algebraic activation function (polynomial, rational, or ReLU) applied componentwise.

6.1 Polynomial activation

If $\sigma(x) = x^r$, then $f_{\mathbf{w}} \in (S^r(F^n))^k$.

Example 6.1 Let $\mathbf{d} = (2, 2, 1)$ and r = 2. Then the output of the network is

$$f_{\mathbf{w}}(\mathbf{x}) = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \sigma \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix}.$$

Writing $\ell_1 = a_{11}x_1 + a_{12}x_2$ and $\ell_2 = a_{21}x_1 + a_{22}x_2$, this becomes

$$f_{\mathbf{w}}(\mathbf{x}) = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} \ell_1^2 \\ \ell_2^2 \end{bmatrix} = b_1 \ell_1^2 + b_2 \ell_2^2.$$

Expanding, we obtain

$$f_{\mathbf{w}}(\mathbf{x}) = (b_1 a_{11}^2 + b_2 a_{21}^2) x_1^2 + (2b_1 a_{11} a_{12} + 2b_2 a_{21} a_{22}) x_1 x_2 + (b_1 a_{12}^2 + b_2 a_{22}^2) x_2^2.$$