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1. Homogeneous polynomials

One of the main objects of our study will be homogeneous polynomials and symmetric tensors. We
begin by defining homogeneous polynomials.

Let F be a field of characteristic zero. For the remainder of this reading group, we will work
mostly over the complex numbers C (or over the reals R, when specified).

Definition 1.1 A homogeneous polynomial of degree r over a field F is a polynomial in which
every monomial has degree r.

Example 1.1 Let F = C and f ∈ C[x, y, z]. Then

f(x, y, z) = x3 + y3 + z3 + 6xyz

is a homogeneous polynomial of degree r = 3.

Remark 1.1 The space of all homogeneous polynomials of degree r in n variables with coefficients
in F will be denoted by Sr(Fn).

Exercise 1.1 What is the dimension of Sr(Fn) as a vector space over F?

2. Symmetric tensors

Our next object of study is a symmetric tensor of order r over an n-dimensional vector space.
Before introducing symmetric tensor, let us first define a general tensor.

We think of a general tensor as a multiarray, i.e., as an element of the space

T ∈ F d1×d2×···×dr ,

where r is called the order of the tensor and each di is a positive integer. Equivalently, we may
write

T = (ai1...ir),

where T (i1, . . . , ir) = ai1...ir are its entries.

Example 2.1 Let T ∈ F 2×2×2. Then T is a tensor of order 3 whose entries may be displayed as
two 2× 2 matrices:

T =

{[
1 2
3 4

]
,

[
5 6
7 8

]}
.

This is a somewhat rudimentary definition, but it will suffice for our purposes.
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2.1 Definition of a symmetric tensor

Let Sr denote the symmetric group on r elements. We now define symmetric tensors.

Definition 2.1 (Symmetric tensor) A tensor T of order r is called symmetric if it is invariant
under any permutation of its indices. That is, for every multi-index (i1, . . . , ir) and every σ ∈ Sr,

T (i1, . . . , ir) = T
(
iσ(1), . . . , iσ(r)

)
.

Example 2.2 Let T ∈ F 2×2×2. One example of a symmetric tensor of order 3 is the 2 × 2 × 2
array with entries

T =

{[
1 2
2 3

]
,

[
2 3
3 4

]}
.

Remark 2.1 The space of all symmetric tensors of order r on Fn is denoted by Symr(F
n).

3. The connection between homogneous polynomials and symmetric tensors

Next, we want to construct the maps

L : Sr(Fn) → Symr(Fn),

R : Symr(Fn) → Sr(Fn).
(1)

3.1 The L map

Let ∂xi : F [x1, . . . , xn] → F [x1, . . . , xn] denote the formal partial derivative

∂xi(f) =
∂f

∂xi
.

If f ∈ Sr(Fn), we may write

f(x) =
∑
|I|=r

aIx
I ,

where I = (i1, i2, . . . , in) is a multi-index, aI = ai1i2...in , and xI = xi11 x
i2
2 · · ·xinn .

For a multi-index I = (i1, . . . , in), define the differential operator

∂xI =
(
∂x1

)i1 ◦ · · · ◦ (∂xn

)in .
Then the map L associates to f the symmetric tensor Tf of order r defined by

Tf (i1, . . . , in) = ∂xI (f).

Example 3.1 Let f ∈ S2(C3) be given by

f(x, y, z) = ax2 + by2 + cz2 +Axy +Bxz + Cyz.

Then

L(f) =

2a A B
A 2b C
B C 2c

 .
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3.2 The R map

Now, given a symmetric tensor T , we want to produce a homogeneous polynomial.
Define

R(T ) = fT ,

where

fT (x) =
∑
|I|=r

1(
n

i1,i2,...,in

)T (i1, . . . , in)xI .

Exercise 3.1 If F is a field of characteristic zero, then the maps L and R establish a one-to-one
correspondence between the space of homogeneous polynomials Sr(Fn) and the space of symmetric
tensors Symr(Fn).

4. Rank one symmetric tensors

Let V be a vector space over F , and V ∗ its dual vector space, i.e.

V ∗ = {α : V → F | α is a linear functional}.

A simple tensor α⊗ v ∈ V ∗ ⊗ V defines a rank-one linear map V → V by x 7→ α(x) v.

Definition 4.1 The tensor α⊗ v ∈ V ∗ ⊗ V is called rank one if its corresponding linear map

Tα,v : V → V, Tα,v(x) = α(x) v

is rank one.

Example 4.1 Let V = C2 with basis e1, e2 and dual basis e1, e2. If A ∈ F 2×2 with

A =

[
a11 a12
a21 a22

]
,

then the associated tensor in V ∗ ⊗ V is

Ã = a11 e
1 ⊗ e1 + a12 e

1 ⊗ e2 + a21 e
2 ⊗ e1 + a22 e

2 ⊗ e2.

In coordinates, if v, w ∈ V , then the rank-one tensor can be written as the outer product

v ⊗ w = vTw,

where v, w are row vectors.

Example 4.2 If
a =

[
a1 a2 a3

]
,

then

a⊗ a =

a1a2
a3

 [
a1 a2 a3

]
=

 a21 a1a2 a1a3
a1a2 a22 a2a3
a1a3 a2a3 a23

 .

Definition 4.2 If v1, . . . , vn ∈ V have coordinates vij (where i indexes the vector vi and j indexes
the jth coordinate), then their tensor (outer) product is defined by

v1 ⊗ v2 ⊗ · · · ⊗ vn =
(
v1i1v2i2 · · · vnin

)
,

where the entry at (i1, . . . , in) is the product of the corresponding coordinates.
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4.1 Homogeneous polynomials and Veronese map

Exercise 4.1 If a =
[
a1 a2 . . . an

]
, then

R(a⊗ · · · ⊗ a) = (a1x1 + · · ·+ anxn)
r.

In other words, we have a map Vr : V → Sr(Fn) given by

Vr(a) = (a1x1 + · · ·+ anxn)
r,

which is called the Veronese map.

Exercise 4.2 When r = 2, show that the image of V2 is the set of symmetric matrices of rank one,
i.e., the variety defined by the vanishing of all 2× 2 minors.

5. Symmetric Rank

In other words, the Veronese map parametrizes all symmetric rank-one tensors. What is a tensor
of rank m?

Definition 5.1 A symmetric tensor T has symmetric rank m if it can be written minimally as a
linear combination of m symmetric rank-one tensors, i.e.,

T = v⊗r
1 + v⊗r

2 + · · ·+ v⊗r
m ,

where each vi ∈ V , and no such expression exists with fewer than m terms. We write

rankS(T ) = m.

Example 5.1 If

A =

[
0 1
1 0

]
,

then
A = 1

2

(
(e1 + e2)⊗ (e1 + e2) − (e1 − e2)⊗ (e1 − e2)

)
.

Exercise 5.1 Show that rankS(A) = 2.

5.1 Waring Rank

On the level of homogeneous forms, the symmetric rank is called the Waring rank. In other words,
a form f ∈ Sr(Fn) has Waring rank m if there exist m nonzero linear forms l1, . . . , lm such that

f = lr1 + · · ·+ lrm.

Example 5.2 If f(x, y) = 2xy, then

f(x, y) = (x+ y)2 − (x− y)2.
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6. Algebraic Shallow Neural Networks

Let d = (n,m, k) be a tuple of positive integers. Consider a map fw : Fn → F k defined by

fw(x) = W2σ(W1x),

where W1 ∈ Fm×n, W2 ∈ F k×m, and σ is an algebraic activation function (polynomial, rational, or
ReLU) applied componentwise.

6.1 Polynomial activation

If σ(x) = xr, then fw ∈ (Sr(Fn))k.

Example 6.1 Let d = (2, 2, 1) and r = 2. Then the output of the network is

fw(x) =
[
b1 b2

]
σ

([
a11 a12
a21 a22

] [
x1
x2

])
.

Writing ℓ1 = a11x1 + a12x2 and ℓ2 = a21x1 + a22x2, this becomes

fw(x) =
[
b1 b2

] [ℓ21
ℓ22

]
= b1ℓ

2
1 + b2ℓ

2
2.

Expanding, we obtain

fw(x) = (b1a
2
11 + b2a

2
21)x

2
1 + (2b1a11a12 + 2b2a21a22)x1x2 + (b1a

2
12 + b2a

2
22)x

2
2.
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